Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma

نویسندگان

  • Ranjith Ramachandran
  • Vijayabhaskar Reddy Junnuthula
  • G. Siddaramana Gowd
  • Anusha Ashokan
  • John Thomas
  • Reshmi Peethambaran
  • Anoop Thomas
  • Ayalur Kodakara Kochugovindan Unni
  • Dilip Panikar
  • Shantikumar V. Nair
  • Manzoor Koyakutty
چکیده

Localized and controlled delivery of chemotherapeutics directly in brain-tumor for prolonged periods may radically improve the prognosis of recurrent glioblastoma. Here, we report a unique method of nanofiber by fiber controlled delivery of anti-cancer drug, Temozolomide, in orthotopic brain-tumor for one month using flexible polymeric nano-implant. A library of drug loaded (20 wt%) electrospun nanofiber of PLGA-PLA-PCL blends with distinct in vivo brain-release kinetics (hours to months) were numerically selected and a single nano-implant was formed by co-electrospinning of nano-fiber such that different set of fibres releases the drug for a specific periods from days to months by fiber-by-fiber switching. Orthotopic rat glioma implanted wafers showed constant drug release (116.6 μg/day) with negligible leakage into the peripheral blood (<100 ng) rendering ~1000 fold differential drug dosage in tumor versus peripheral blood. Most importantly, implant with one month release profile resulted in long-term (>4 month) survival of 85.7% animals whereas 07 day releasing implant showed tumor recurrence in 54.6% animals, rendering a median survival of only 74 days. In effect, we show that highly controlled drug delivery is possible for prolonged periods in orthotopic brain-tumor using combinatorial nanofibre libraries of bulk-eroding polymers, thereby controlling glioma recurrence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin

Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...

متن کامل

SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin

Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...

متن کامل

A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI

Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...

متن کامل

Polifeprosan 20, 3.85% carmustine slow release wafer in malignant glioma: patient selection and perspectives on a low-burden therapy

Polifeprosan 20 with carmustine (GLIADEL®) polymer implant wafer is a biodegradable compound containing 3.85% carmustine (BCNU, bischloroethylnitrosourea) implanted in the brain at the time of planned tumor surgery, which then slowly degrades to release the BCNU chemotherapy directly into the brain thereby bypassing the blood-brain barrier. Carmustine implant wafers were demonstrated to improve...

متن کامل

Altered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma

      EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017